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Abstract 
This paper describes the design and implementation of Enhanced Transaction TCP. ET/TCP, which is 
based on Transaction TCP defined in RFC1644, is designed to provide better security and back-
compatibility with TCP. We start with an introduction to T/TCP, including its purpose, design and possible 
applications. Then, we present several widely held claims of T/TCP security problems. After analyzing 
those claims in details, we provide solutions. After that, we introduce methods to achieve better 
compatibility with TCP. Finally, we describe the implementation of ET/TCP in Linux Kernel 2.4.2. 

 

1 Introduction 

1.1 What is T/TCP 
T/TCP is an extension for standard TCP. It uses a 
monotonically increasing variable CC (Connection 
Counts) to bypass 3-way handshake (called TAO, 
TCP Accelerated Open) and reduce TIME_WAIT 
period. Figure 1 depicts a standard T/TCP 
connection with only three datagrams exchanged. 
T/TCP greatly decreases the overhead standard 
TCP introduces when dealing with transaction-
oriented connections.  

 
Figure 1: A typical T/TCP connection 

1.2 Why T/TCP 
The TCP protocol implements a virtual-circuit 
transport service that provides reliable and ordered 
data delivery over a full-duplex connection. 
Distributed applications, which are becoming 
increasingly numerous and sophisticated in the 
Internet nowadays, tend to use a transaction-
oriented rather than a virtual circuit style of 
communication. Currently, a transaction-oriented 
Internet application must choose to suffer the 
overhead of opening and closing TCP connections 
or else build an application-specific transport 
mechanism on top of the connectionless transport 
protocol UDP.  

The transaction service model has the following 
features: 

• The fundamental interaction is a request 
followed by a response.  

• An explicit open or close phase would impose 
excessive overhead. 

• At-most-once semantics is required; that is, a 
transaction must not be “replayed” by a 
duplicate request packet. 

• In favorable circumstances, a reliable 
request/response handshake can be performed 
with exactly one packet in each direction. 

• The minimum transaction latency for a client 
is RTT + SPT, where RTT is the round-trip 
time and SPT is the server processing time. 
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In practice, however, most production systems 
implement only TCP and UDP at the transport 
layer. It has proven difficult to leverage a new 
transport protocol into place, to be widely enough 
available to be useful for application developers.  

T/TCP is an alternative approach to providing a 
transaction transport protocol: extending TCP to 
implement the transaction service model, while 
continuing to support the virtual circuit model. 

1.3 Feature Designs 

1.3.1. TCP Accelerated Open (TAO) 
T/TCP introduces a 32-bit incarnation number, 
called a “connection count” (CC), which is carried 
in a newly introduced TCP option (CC option) in 
each segment. A distinct CC value is assigned to 
each direction of an open connection. A T/TCP 
implementation assigns monotonically increasing 
CC values to successive connections that it opens 
actively or passively. 

T/TCP uses the monotonic property of CC values 
in initial SYN segments to bypass the 3WHS, a 
mechanism that we call TCP Accelerated Open 
(TAO). Under TAO, a host caches a small amount 
of state per remote host. Specifically, a T/TCP host 
that is acting as a server keeps a cache containing 
the last valid CC value that it has received from 
each different client host. If an initial SYN 
segment (i.e., a segment with a SYN bit but no 
ACK bit) from a particular client host carries a CC 
value larger than the corresponding cached value, 
the monotonic property of CC ensures that the 
SYN segment must be new and can therefore be 
accepted immediately. Otherwise, the server host 
does not know whether the SYN segment is an old 
duplicate or is simply delivered out of order; it 
therefore executes a normal 3WHS to validate the 
SYN. Thus, the TAO mechanism provides an 
optimization, with the normal TCP mechanism as a 
fallback.  

1.3.2. TIME-WAIT Truncation 
In TCP, TIME-WAIT state is used for two 
purposes: 

• Full-duplex connection close 

• Protection against old duplicate segments 

T/TCP introduces a 32-bit incarnation number, 
called a “connection count” (CC) that is carried in 
a TCP option in each segment. A distinct CC value 
is assigned to each direction of an open connection. 
A T/TCP implementation assigns monotonically 
increasing CC values to successive connections 
that it opens actively or passively. 

The CC value carried in initial SYN segments will 
guarantee full-duplex connection close with TIME-
WAIT truncated from 2*MSL (Maximum Segment 
Life) to 8*RTO (Retransmission Timeout). 

Besides, the CC value carried in non-SYN 
segments is used to protect against old duplicate 
segments from earlier incarnations of the same 
connection (we call such segments ‘antique 
duplicates’ for short). In the case of short 
connections (e.g., transactions) that last shorter 
than MSL, these CC values allow TIME-WAIT 
state duration to be safely truncated. 

1.4 Possible Applications 

1.4.1. WWW 
A typical HTTP client-server transaction is like 
this: The client does active open and sends a short 
request to the server. The server sends a response 
after receiving the request and processing the data. 
Then, the server does active close.  

T/TCP is ideal for this transaction. The client can 
sends the request in its first SYN packet, thus 
reducing the overall time by one RTT and the 
number of packets exchanged. This way, both time 
and bandwidth are saved. The server can reduce 
the total number of TCBs by truncating 
TIME_WAIT length. This is especially useful for 
busy HTTP servers.  

1.4.2. DNS  
Nowadays, both DNS requests and responses are 
delivered with UDP. If a DNS response is longer 
than 512 bytes, only first 512 bytes are sent to the 
client with UDP, along with a “truncated” flag. 
Thereafter, the client retransmits the DNS request 
with TCP and the server transmits the entire DNS 
response with TCP.  

The reason of this method is the possibility that 
certain hosts may not be able to reassemble IP 
datagrams longer than 576 bytes. (Actually, many 
UDP applications limit the length of user’s data to 
512 bytes.) Because TCP is stream-oriented, the 
same problem won’t occur. During the 3-way 
handshake, both TCP sides get to know each 
other’s MSS and agree to use the smaller one for 
the rest of the connection. Thereafter, the sender 
disassembles user’s data into various packets 
shorter or equal to the negotiated MSS, thus 
avoiding IP fragmentations. The receiver simply 
reassembles all the received packets and delivers 
the received data to upper applications as required.  

DNS clients and servers can make good use of 
T/TCP, which possesses both UDP’s timesaving 
and TCP’s reliability. 
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1.4.3. RPC 
Nearly all the papers about applying transport 
protocols to transaction processing nominate RPC 
as a choice. With RPC, the client sends a request to 
the server that has the procedure to be invoked. 
The client includes arguments in its request while 
the server includes in its response the result 
obtained by running the specified procedure.  

Usually RPC packets are large in size, resulting in 
the necessity of delivery reliability. T/TCP 
provides TCP’s reliability and avoids TCP’s huge 
overhead of 3-way handshake. All applications that 
reply on RPC, such as NFS, can use T/TCP for this 
reason. 

1.4.4. Embedded Devices 
In network-connected embedded devices, it is 
often a given that the Internet Protocol (IP) will 
serve as the network layer protocol. A crucial 
choice for transaction applications is which 
protocol to use at the transport layer. In light of 
memory use, network bandwidth, response time, 
reliability and interoperability, T/TCP fits these 
requirements better compared with standard TCP 
and UDP. 

2 T/TCP Security 

2.1 Claims of T/TCP Security 
Problems 

2.1.1. Dominance of TAO  
It is easy for an attacker to ensure the success or 
failure of the TAO test. There are two methods. 
The first relies on the second oldest cracking tool 
in history: sniffing; the second is more of a brutish 
technique, but is just as effective.  

Packet Sniffing 

If we are on the local network with one of the hosts, 
we can snoop the current CC value in use for a 
particular connection. Since the tcp_ccgen is 
incremented monotonically we can precisely spoof 
the next expected value by incrementing the 
snooped number. Not only will this ensure the 
success of our TAO test, but it will ensure the 
failure of the next TAO test for the client we are 
spoofing.  

The Numbers Game 

The other method of TAO dominance is a bit 
rougher, but works almost as well. The CC is an 

unsigned 32-bit number (ranging in value from 0 - 
4,294,967,295). Under all observed 
implementations, the tcp_ccgen is initialized to 1. 
If we need to ensure the success of a TAO 
connection, but is not in a position where we can 
sniff on a local network, we should simply choose 
a large value for the spoofed CC. The chances that 
one given T/TCP host will burn through even half 
the tcp_ccgen space with another given host is 
highly unlikely. Simple statistics tell us that the 
larger the chosen tcp_ccgen is, the greater the odds 
that the TAO test will succeed. When in doubt, aim 
high.  

2.1.2. SYN Flooding 
TCP SYN flooding hasn’t changed much under 
T/TCP. The actual attack is the same: a series of 
TCP SYNs spoofed from unreachable IP addresses. 
However, there are 2 major considerations to keep 
in mind when the target host supports T/TCP:  

SYN cookie invalidation: A host supporting 
T/TCP cannot, at the same time, implement SYN 
cookies. TCP SYN cookies are a SYN flood 
defense technique that works by sending a secure 
cookie as the sequence number in the second 
packet of the 3-way handshake, then discarding all 
state for that connection. Any TCP option sent 
would be lost. If the final ACK comes in, only then 
will the server host create the kernel socket data 
structures. TAO obviously cannot be used with 
SYN cookies.  

Failed TAO processing results in queued data: If 
the TAO test fails, any data included with that 
packet will be queued pending the completion of 
the connection processing (the 3-way handshake). 
During a SYN flood, this can make the attack more 
severe as memory buffers holding these data fill up. 
In this case, the attacker would want to ensure the 
failure of the TAO test for each spoofed packet. 

2.1.3. Trust Relationship 
This is an old attack with a new twist. The attack 
paradigm is still the same; this time, however, it is 
easier to wage. Under T/TCP, there is no need to 
attempt to predict TCP sequence numbers. 
Previously, this attack required the attacker to 
predict the return sequence number in order to 
complete the connection establishment processing 
and move the connection into the established state. 
With T/TCP, a packet’s data will be accepted by 
the application as soon as the TAO test succeeds. 
All the attacker needs to do is to ensure that the 
TAO test will succeed. Consider the Figure 2 
below:  
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Figure 2: Trust Relationship 

The attacker first sends a spoofed connection 
request TAO packet to the server. The data portion 
of this packet presumably contains the tried and 
true non-interactive backdoor command ‘echo + + 
> .rhosts‘. At (1) the TAO test succeeds and the 
data is accepted (2) and passed to application 
(where it is processed). The server then sends its 
T/TCP response to the trusted host (3). The trusted 
host, of course, has no open socket for this 
connection, and (4) responds with the expected 
RST segment (5). This RST will teardown the 
attacker’s spoofed connection (6) on the server. If 
everything goes according to plan, and the process 
executing the command in question doesn’t take 
too long to run, the attacker may now log directly 
into the server.  

To deal with (5) the attacker can, of course, wage 
some sort of denial of service attack on the trusted 
host to keep it from responding to the unwarranted 
connection. 

2.1.4. Duplicate Delivery 
Ignoring all the other weaknesses of T/TCP, there 
is one major flaw that causes the T/TCP to degrade 
and behave decidedly non-TCP-like, therefore 
breaking the protocol entirely. The problem is 
within the TAO mechanism. Certain conditions 
can cause T/TCP to deliver duplicate data to the 
application layer. Consider the timeline in Figure 3 
below:  

 

Figure 3: Duplicate Delivery 

At time 0 the client sends its TAO encapsulated 
data to the server (for this example, consider that 
both hosts have had recent communication, and the 
server has defined CC values for the client). The 
TAO test succeeds (1) and the server passes the 
data to the application layer for processing (2). 
Before the server can send its response however 
(presumably an ACK) it crashes (3). The client 
receives no acknowledgement from the server, so 
it times out and resends its packet (4). After the 
server reboots it receives this retransmission, this 
time, however, the TAO test fails and the server 
queues the data (5). The failed TAO test forces a  

3-way handshake (6) because the server’s CC 
cache is invalidated when it reboots. After 
completing the 3-way handshake and establishing 
a connection, the server then passes the queued 
data to the application layer, for a second time. The 
server cannot tell that it has already accepted the 
data because it maintains no state after a reboot. 
This violates the basic premise of T/TCP that it 
must remain completely backward compatible with 
TCP.  
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2.2 Solutions to T/TCP Security 
Problems 

2.2.1. Dominance of TAO 
Packet Sniffing 

T/TCP is not subjective to packet sniffing more 
easily than TCP. But after being sniffed, it’s 
indeed much easier for a cracker to fake T/TCP 
connections than TCP ones, due to TAO 
mechanism. However, any blame of T/TCP based 
on this notion is obviously baseless, because it’s 
just as ridiculous as blaming cars based on a notion 
that a thief can slip away faster after stealing your 
car instead of your bicycle.  

The Numbers Game 

Fairly speaking, current TAO mechanism is really 
too simple. There is only one requirement to pass 
TAO test: received CC value is larger than cached 
CC value on the server. Even worse, CC is an 
unsigned 32-bit integer which is, according to 
RFC1644, initialized to 1 when the machine starts 
up. As a result, a fabricated large value (such as 
2^32 –1) has a nearly definite chance of passing 
TAO test. This can be a serious security hole. 
Therefore, TAO mechanism should be enhanced. 

Solution 

1. Make CC a socket variable instead of a global 
one 

In RFC1644, CC is defined as a global variable. 
Whenever a new connection has been established, 
no matter through which network interface, CC is 
incremented by 1. However, as we find out, by 
making CC a socket variable instead of a global 
one, several benefits can be achieved: 

In order to maintain T/TCP’s correctness, CC 
values must advance at a rate slower than 2^32-1 
counts per 2MSL. Originally, with CC a global 
variable, 2^32-1/2MSL is the maximum number of 
total transactions per second on a machine. Now, 
with CC a socket variable, 2^32-1/2MSL is the 
maximum number of total transactions per second 
on a socket, or a pair of machines. Machines with 
busier network interfaces will gain great benefits in 
this way. 

As a socket variable, CC increases in an 
anticipated manner: CC value increments by 1 only 
when a new connection has been established 
between the specific pair of machines. Thus, the 
new requirement to pass TAO test is that received 
CC value is exactly one larger than cached CC 
value on the server side. As a result, the possibility 
of success for “The Numbers Game” is greatly 
reduced.  

2. Make CC randomly initialized 

As stated above, by making CC a socket variable, 
TAO mechanism is very much enhanced. However, 
there exists one fact: usually the transaction rate 
between a specific pair of machines is low, which 
means the CC value for a certain socket can be 
small (say under 100) in most cases. Accordingly, 
“The Numbers Game” can have an updated version: 
starting from 1, try different CC values one by one. 
After 100 times or so, a T/TCP connection may be 
successfully faked. 

In order to make passing TAO test more expensive, 
we highly recommend making CC randomly 
initialized, which means CC can start from any 
place from 1 to 2^32-1. This way, crackers will 
really have a tough time. 

2.2.2. SYN Flooding 
SYN Cookie 

SYN cookie cannot be used with T/TCP since no 
TCP options can be saved when SYN cookie are in 
use. However, it’s an inherent problem in SYN 
cookie and not a fault at all of T/TCP. With SYN 
cookie, no TCP extensions with TCP options are 
possible, not only T/TCP. 

Generally, there are two ways to defend against 
SYN flooding: SYN cache and SYN cookie. With 
SYN cache, the amount of memory for states is 
reduced greatly, thus making SYN flooding much 
more expensive but never eradicating the 
possibility. SYN cookie eliminates the need for 
storing states with the price of losing any TCP 
option.  

Besides, SYN cookie has other 2 drawbacks: 

1. TCP requires unacknowledged data to be 
retransmitted. The server is supposed to 
retransmit the SYN.ACK packet before 
giving up and dropping the connection. When 
SYN.ACK arrives at the client but the ACK 
gets lost, there is a disparity about the 
establishment state between the client and 
server. Ordinarily, this problem can be solved 
by server’s retransmission. But in the case of 
SYN cookie, there is no state kept on the 
server and retransmission is impossible. 

2. SYN cookie has the property that the entire 
connection establishment is performed by the 
ACK packet from the client, independent of 
the preceding SYN and SYN.ACK packets. 
This opens the possibility of ACK flooding, 
in the hope that one will have the correct 
value to establish a connection. This also 
provides an approach to bypass firewalls 
which normally only filter packets with SYN 
bit set. 
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Due to the limits of SYN cookie listed above, a 
typical implementation method is to use SYN 
cache first and falls back to SYN cookie when a 
certain amount of memory has been allocated for 
state preservation.  

Due the existential limits of SYN cookie, T/TCP’s 
incompatibility with it should not be a guilt. The 
way to get around can be simple: only use SYN 
cache with T/TCP and turn off T/TCP when SYN 
cookie is enabled. 

Failed TAO resulting in queued data. 

According to RFC1644, when TAO fails, the 
protocol falls back to TCP but the data sent in the 
SYN packet is queued to decrease overhead and 
increase throughput. However, deliberately failing 
TAO during SYN flooding can be quite easy but 
destructive. In order for T/TCP to be safer and 
completely back compatible with TCP, the data 
should be discarded and sent again after the 3-way 
handshake succeeds. 

2.2.3. Trust Relationship 
This attack is completely based upon “Dominance 
of TAO”. If TAO can’t be dominated as claimed 
above, “Trust Relationship” attack on T/TCP is, at 
least, as difficult as on standard TCP. 

2.2.4. Duplicate Delivery 
Duplicate delivery is an inherent problem in RPC, 
which is called “Server Crash”. Fairly speaking, 
T/TCP shouldn’t be blamed for it. Let’s take a 
closer look at this problem. 

In Remote Procedure Call (RPC), requests can be 
divided into two categories: idempotent or non-
idempotent. Idempotent requests can be executed 
repeatedly without errors while non-idempotent 
ones can’t. An example of non-idempotent request 
is withdrawing 1 million USD from your account. 
You surely don’t want it to happen more times 
than you want.  

“Server Crash” can happen in two ways: 

• After receiving and before execution 

• After execution and before responding 

Unfortunately, the client can’t tell any difference 
between those two kinds of server crashes. All it 
knows is response timeout. 

Facing this problem, 3 choices are available: 

1. The client waits until the server finishes 
reboot, after which the client resends the 
request. This technique is called “at least once 
semantics”. 

2. The client gives up and reports failure. This 
technique is called “at most once semantics”. 

3. No special action is taken. The client gets no 
help or guarantee. On the server side, RPC 
may be executed many times, or not at all. 
Obviously, the merit is ease of 
implementation. 

The above 3 choices are not ideal. The ideal one is 
“exactly once semantics” which is very difficult to 
realize.  

Possible solutions 

1. The client assigns a sequence number to every 
packet it transmits. And the server stores the 
latest sequence number it receives from the 
client. Thus, the server can easily tell whether 
a packet from the client is a retransmitted one. 

2. The client sets a certain bit when marking a 
packet retransmitted. That bit can work as a 
warning for the server: additional cares need 
to be taken for the packet. 

In real-life implementations, it’s the application 
layer that shoulders the responsibility. Generally 
speaking, idempotent requests are those 
inseparable from their contexts. If the application 
sees a response timeout after sending a request, it 
can take extra measures to check whether the 
request contexts have been changed and make a 
decision (e.g. retransmitting the request or sending 
a updated request) accordingly. 

3 Methods to Achieve 
Better Compatibility 
with TCP 

3.1 Discard data in SYN when 
TAO fails 

When a T/TCP-enabled client sends initial SYN 
(with data) to a remote server, 3WHS can be 
carried out in two situations: the server doesn’t 
support T/TCP, or the server supports T/TCP but 
TAO fails. Most current TCP implementations 
discard data sent with initial SYN so the data 
should be sent again after the 3-way handshake 
succeeds. T/TCP-enabled server should also 
discard data and behave exactly the same as a 
T/TCP-disabled server. Otherwise, the client will 
need to differentiate the above two situations and 
decide whether to retransmit the data. Besides, 
security can also be enhanced this way. 
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3.2  Turn on or off T/TCP 
globally or locally, at any 
time 

In our implementation, a global flag co-exists with 
socket-level flags. The global flag enables (when 
on)  or disables (when off) T/TCP features for all 
the newly created sockets. In other words, the 
global flag acts as a default value. Currently, its 
state is a kernel compilation choice. By contrast, 
socket-level flags can override the global flag. 
They can be turned on or off by calling system 
function setsockopt() with option name “TTCP” 
and option value 1(on) or 0(off). Enabling or 
disabling T/TCP during run-time introduces 
greater flexibility and better compatibility with 
TCP. 

4 Implementation of 
ET/TCP in Linux Kernel 
2.4.2 

4.1 New TCP Options 
Notes 

� CC_ECHO option is included only if 
CC option is included. 

� CC_ECHO option is included only in 
SYN/ACK packets if both sides 
support T/TCP.  

 
Figure 4: New TCP Options

 

4.2 New Structures and Macros 
in file “include/linux/tcp.h” 

/* a macro used to increment ttcp_gen and 
ensures ttcp_gen to be non-zero when it’s 
rounded-up */ 

 

#define CC_INC(a) (++(a) == 0 ? ++(a) : (a)) 

 

in file “include/net/tcp.h” 
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/* constants used in T/TCP options */ 

 

#define TCPOLEN_CC 6 

#define TCPOLEN_CC_NEW 6 

#define TCPOLEN_CC_ECHO 6 

#define TCPOLEN_CC_ALIGNED 8 

 

in struct dst_entry{} in file 
“include/net/dst.h” 

/* The per-host cache tao_cc is the CC value 
contained in the last SYN (no ACK) packet 
received from the remote host; tao_ccsent is 
the CC value contained in the last SYN (no ACK) 
packet sent to the remote host; ttcp_gen is a 
socket-level non-zero variable that’s 
incremented everytime a new connection has been 
started; */ 

 

struct rt_tao { 

__u32 tao_cc; 

__u32 tao_ccsent; 

_u32 ttcp_gen; 

} tao; 

 

in struct tcp_opt{} in file 
“include/net/sock.h” 

/* The per-connection cache t_duration shows 
how long this connection has been in existence 
since active open; cc_send is the CC value 
contained in every packet sent to the remote 
host on this connection; cc_recv is the CC 
value contained in every packet received from 
the remote host on this connection */ 

 

struct tcp_opt_cc { 

unsigned long t_duration; 

__u32 cc_send; 

__u32 cc_recv; 

} cc_cache; 

 

/* two booleans for T/TCP states */ 

 

char TTCP_SENDSYN, TTCP_SENDFIN; 

 

/* values of T/TCP options parsed from incoming 
packets */ 

 

__u32 cc; 

__u32 cc_new; 

__u32 cc_echo; 

 

/* a per-connection flag to enable or disable 
T/TCP */ 

 

int do_rfc1644; 

 

in file “include/net/sock.h” 

/* macros to set two booleans for T/TCP states 
*/ 

 

#define TTCP_SENDSYN_ON(sk) ((sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN = 1) 

#define TTCP_SENDFIN_ON(sk) ((sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN = 1) 

#define TTCP_SENDSYN_OFF(sk) ((sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN = 0) 

#define TTCP_SENDFIN_OFF(sk) ((sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN = 0) 

 

/* macros to test T/TCP states */ 

 

#define TTCP_SYN_SENT(sk) ((sk)->state == 
TCP_SYN_SENT && (!(sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN) && (sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN) 

#define TTCP_SYN_RECV(sk) ((sk)->state == 
TCP_SYN_RECV && (!(sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN) && (sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN) 

#define TTCP_ESTABLISHED(sk) ((sk)->state == 
TCP_ESTABLISHED && (!(sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN) && (sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN) 

#define TTCP_CLOSE_WAIT(sk) ((sk)->state == 
TCP_CLOSE_WAIT && (!(sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN) && (sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN) 

#define TTCP_LAST_ACK(sk) ((sk)->state == 
TCP_LAST_ACK && (!(sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN) && (sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN) 

#define TTCP_FIN_WAIT1(sk) ((sk)->state == 
TCP_FIN_WAIT1 && (!(sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN) && (sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN) 

#define TTCP_CLOSING(sk) ((sk)->state == 
TCP_CLOSING && (!(sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN) && (sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN) 

4.3 TIME-WAIT Truncation 
Step One 

In order to record the start point of a connection, 
we have added the following line: 
tp->cc_cache.t_duration = jiffies; 

to function ttcp_connect 
(net/ipv4/tcp_output.c) 

Step Two 

When a sock enters TIME_WAIT state, it calls 
function tcp_time_wait() in 
net/ipv4/tcp_minisocks.c. In that function, we 
check whether the connection has been in 
existence for a period shorter than TTCP_MSL. If 
so, TIME_WAIT truncation is valid. And we set 
the TIME_WAIT period to 12*TTCP_MSL (12s) 
instead of TCP_TIMEWAIT_LEN (60s). 

Step Three 

The client can actually call bind() to reuse one 
particular local port intentionally. In this process, 
tcp_v4_get_port() is called. We have modified the 
function to enable it to make a particular port 
available when the port is currently owned by one 
sock in TIME_WAIT state.
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4.4 Sending Function Call Tree 

 
Figure 5: Sending Function Call Tree 

4.5 Receiving Function Call Tree 

 
Figure 6: Receiving Function Call Tree 
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4.6 Write T/TCP-enabled Client and Server Codes 
Client Codes  

T/TCP client doesn’t use “connect( )”, but uses “sendto( )” directly. “sendto( )” connects to the server and 
sends a request simultaneously with only one packet. Pay attention: we choose a new flag “MSG_EOF” as 
the 4th argument of “sendto( )”, which signals to the kernel the end of the user’s data. As a result, this 
special “sendto( )” sends one packet with SYN + data + FIN. In other words, “sendto( )” performs the 
functions of “connect( )”, “write( )” and “shutdown( )”. 

Server Codes  

There is only one difference: T/TCP server uses “send( )” instead of “write( )”. Thus, by setting “send( )” 
4th argument to MSG_EOF, the server sends the response together with FIN flag in one packet. 
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