
 1

Enhanced Transaction TCP—Design
and Implementation

Ren Bin and Zhang Xiaolan
Department of Electronic Engineering

School of Electronics and Information Technology
Shanghai Jiaotong University

bren@sjtu.edu.cn, zhang_xiaolan@sjtu.edu.cn

Abstract
This paper describes the design and implementation of Enhanced Transaction TCP. ET/TCP, which is
based on Transaction TCP defined in RFC1644, is designed to provide better security and back-
compatibility with TCP. We start with an introduction to T/TCP, including its purpose, design and possible
applications. Then, we present several widely held claims of T/TCP security problems. After analyzing
those claims in details, we provide solutions. After that, we introduce methods to achieve better
compatibility with TCP. Finally, we describe the implementation of ET/TCP in Linux Kernel 2.4.2.

1 Introduction

1.1 What is T/TCP
T/TCP is an extension for standard TCP. It uses a
monotonically increasing variable CC (Connection
Counts) to bypass 3-way handshake (called TAO,
TCP Accelerated Open) and reduce TIME_WAIT
period. Figure 1 depicts a standard T/TCP
connection with only three datagrams exchanged.
T/TCP greatly decreases the overhead standard
TCP introduces when dealing with transaction-
oriented connections.

Figure 1: A typical T/TCP connection

1.2 Why T/TCP
The TCP protocol implements a virtual-circuit
transport service that provides reliable and ordered
data delivery over a full-duplex connection.
Distributed applications, which are becoming
increasingly numerous and sophisticated in the
Internet nowadays, tend to use a transaction-
oriented rather than a virtual circuit style of
communication. Currently, a transaction-oriented
Internet application must choose to suffer the
overhead of opening and closing TCP connections
or else build an application-specific transport
mechanism on top of the connectionless transport
protocol UDP.

The transaction service model has the following
features:

• The fundamental interaction is a request
followed by a response.

• An explicit open or close phase would impose
excessive overhead.

• At-most-once semantics is required; that is, a
transaction must not be “replayed” by a
duplicate request packet.

• In favorable circumstances, a reliable
request/response handshake can be performed
with exactly one packet in each direction.

• The minimum transaction latency for a client
is RTT + SPT, where RTT is the round-trip
time and SPT is the server processing time.

 2

In practice, however, most production systems
implement only TCP and UDP at the transport
layer. It has proven difficult to leverage a new
transport protocol into place, to be widely enough
available to be useful for application developers.

T/TCP is an alternative approach to providing a
transaction transport protocol: extending TCP to
implement the transaction service model, while
continuing to support the virtual circuit model.

1.3 Feature Designs

1.3.1. TCP Accelerated Open (TAO)
T/TCP introduces a 32-bit incarnation number,
called a “connection count” (CC), which is carried
in a newly introduced TCP option (CC option) in
each segment. A distinct CC value is assigned to
each direction of an open connection. A T/TCP
implementation assigns monotonically increasing
CC values to successive connections that it opens
actively or passively.

T/TCP uses the monotonic property of CC values
in initial SYN segments to bypass the 3WHS, a
mechanism that we call TCP Accelerated Open
(TAO). Under TAO, a host caches a small amount
of state per remote host. Specifically, a T/TCP host
that is acting as a server keeps a cache containing
the last valid CC value that it has received from
each different client host. If an initial SYN
segment (i.e., a segment with a SYN bit but no
ACK bit) from a particular client host carries a CC
value larger than the corresponding cached value,
the monotonic property of CC ensures that the
SYN segment must be new and can therefore be
accepted immediately. Otherwise, the server host
does not know whether the SYN segment is an old
duplicate or is simply delivered out of order; it
therefore executes a normal 3WHS to validate the
SYN. Thus, the TAO mechanism provides an
optimization, with the normal TCP mechanism as a
fallback.

1.3.2. TIME-WAIT Truncation
In TCP, TIME-WAIT state is used for two
purposes:

• Full-duplex connection close

• Protection against old duplicate segments

T/TCP introduces a 32-bit incarnation number,
called a “connection count” (CC) that is carried in
a TCP option in each segment. A distinct CC value
is assigned to each direction of an open connection.
A T/TCP implementation assigns monotonically
increasing CC values to successive connections
that it opens actively or passively.

The CC value carried in initial SYN segments will
guarantee full-duplex connection close with TIME-
WAIT truncated from 2*MSL (Maximum Segment
Life) to 8*RTO (Retransmission Timeout).

Besides, the CC value carried in non-SYN
segments is used to protect against old duplicate
segments from earlier incarnations of the same
connection (we call such segments ‘antique
duplicates’ for short). In the case of short
connections (e.g., transactions) that last shorter
than MSL, these CC values allow TIME-WAIT
state duration to be safely truncated.

1.4 Possible Applications

1.4.1. WWW
A typical HTTP client-server transaction is like
this: The client does active open and sends a short
request to the server. The server sends a response
after receiving the request and processing the data.
Then, the server does active close.

T/TCP is ideal for this transaction. The client can
sends the request in its first SYN packet, thus
reducing the overall time by one RTT and the
number of packets exchanged. This way, both time
and bandwidth are saved. The server can reduce
the total number of TCBs by truncating
TIME_WAIT length. This is especially useful for
busy HTTP servers.

1.4.2. DNS
Nowadays, both DNS requests and responses are
delivered with UDP. If a DNS response is longer
than 512 bytes, only first 512 bytes are sent to the
client with UDP, along with a “truncated” flag.
Thereafter, the client retransmits the DNS request
with TCP and the server transmits the entire DNS
response with TCP.

The reason of this method is the possibility that
certain hosts may not be able to reassemble IP
datagrams longer than 576 bytes. (Actually, many
UDP applications limit the length of user’s data to
512 bytes.) Because TCP is stream-oriented, the
same problem won’t occur. During the 3-way
handshake, both TCP sides get to know each
other’s MSS and agree to use the smaller one for
the rest of the connection. Thereafter, the sender
disassembles user’s data into various packets
shorter or equal to the negotiated MSS, thus
avoiding IP fragmentations. The receiver simply
reassembles all the received packets and delivers
the received data to upper applications as required.

DNS clients and servers can make good use of
T/TCP, which possesses both UDP’s timesaving
and TCP’s reliability.

 3

1.4.3. RPC
Nearly all the papers about applying transport
protocols to transaction processing nominate RPC
as a choice. With RPC, the client sends a request to
the server that has the procedure to be invoked.
The client includes arguments in its request while
the server includes in its response the result
obtained by running the specified procedure.

Usually RPC packets are large in size, resulting in
the necessity of delivery reliability. T/TCP
provides TCP’s reliability and avoids TCP’s huge
overhead of 3-way handshake. All applications that
reply on RPC, such as NFS, can use T/TCP for this
reason.

1.4.4. Embedded Devices
In network-connected embedded devices, it is
often a given that the Internet Protocol (IP) will
serve as the network layer protocol. A crucial
choice for transaction applications is which
protocol to use at the transport layer. In light of
memory use, network bandwidth, response time,
reliability and interoperability, T/TCP fits these
requirements better compared with standard TCP
and UDP.

2 T/TCP Security

2.1 Claims of T/TCP Security
Problems

2.1.1. Dominance of TAO
It is easy for an attacker to ensure the success or
failure of the TAO test. There are two methods.
The first relies on the second oldest cracking tool
in history: sniffing; the second is more of a brutish
technique, but is just as effective.

Packet Sniffing

If we are on the local network with one of the hosts,
we can snoop the current CC value in use for a
particular connection. Since the tcp_ccgen is
incremented monotonically we can precisely spoof
the next expected value by incrementing the
snooped number. Not only will this ensure the
success of our TAO test, but it will ensure the
failure of the next TAO test for the client we are
spoofing.

The Numbers Game

The other method of TAO dominance is a bit
rougher, but works almost as well. The CC is an

unsigned 32-bit number (ranging in value from 0 -
4,294,967,295). Under all observed
implementations, the tcp_ccgen is initialized to 1.
If we need to ensure the success of a TAO
connection, but is not in a position where we can
sniff on a local network, we should simply choose
a large value for the spoofed CC. The chances that
one given T/TCP host will burn through even half
the tcp_ccgen space with another given host is
highly unlikely. Simple statistics tell us that the
larger the chosen tcp_ccgen is, the greater the odds
that the TAO test will succeed. When in doubt, aim
high.

2.1.2. SYN Flooding
TCP SYN flooding hasn’t changed much under
T/TCP. The actual attack is the same: a series of
TCP SYNs spoofed from unreachable IP addresses.
However, there are 2 major considerations to keep
in mind when the target host supports T/TCP:

SYN cookie invalidation: A host supporting
T/TCP cannot, at the same time, implement SYN
cookies. TCP SYN cookies are a SYN flood
defense technique that works by sending a secure
cookie as the sequence number in the second
packet of the 3-way handshake, then discarding all
state for that connection. Any TCP option sent
would be lost. If the final ACK comes in, only then
will the server host create the kernel socket data
structures. TAO obviously cannot be used with
SYN cookies.

Failed TAO processing results in queued data: If
the TAO test fails, any data included with that
packet will be queued pending the completion of
the connection processing (the 3-way handshake).
During a SYN flood, this can make the attack more
severe as memory buffers holding these data fill up.
In this case, the attacker would want to ensure the
failure of the TAO test for each spoofed packet.

2.1.3. Trust Relationship
This is an old attack with a new twist. The attack
paradigm is still the same; this time, however, it is
easier to wage. Under T/TCP, there is no need to
attempt to predict TCP sequence numbers.
Previously, this attack required the attacker to
predict the return sequence number in order to
complete the connection establishment processing
and move the connection into the established state.
With T/TCP, a packet’s data will be accepted by
the application as soon as the TAO test succeeds.
All the attacker needs to do is to ensure that the
TAO test will succeed. Consider the Figure 2
below:

 4

Figure 2: Trust Relationship

The attacker first sends a spoofed connection
request TAO packet to the server. The data portion
of this packet presumably contains the tried and
true non-interactive backdoor command ‘echo + +
> .rhosts‘. At (1) the TAO test succeeds and the
data is accepted (2) and passed to application
(where it is processed). The server then sends its
T/TCP response to the trusted host (3). The trusted
host, of course, has no open socket for this
connection, and (4) responds with the expected
RST segment (5). This RST will teardown the
attacker’s spoofed connection (6) on the server. If
everything goes according to plan, and the process
executing the command in question doesn’t take
too long to run, the attacker may now log directly
into the server.

To deal with (5) the attacker can, of course, wage
some sort of denial of service attack on the trusted
host to keep it from responding to the unwarranted
connection.

2.1.4. Duplicate Delivery
Ignoring all the other weaknesses of T/TCP, there
is one major flaw that causes the T/TCP to degrade
and behave decidedly non-TCP-like, therefore
breaking the protocol entirely. The problem is
within the TAO mechanism. Certain conditions
can cause T/TCP to deliver duplicate data to the
application layer. Consider the timeline in Figure 3
below:

Figure 3: Duplicate Delivery

At time 0 the client sends its TAO encapsulated
data to the server (for this example, consider that
both hosts have had recent communication, and the
server has defined CC values for the client). The
TAO test succeeds (1) and the server passes the
data to the application layer for processing (2).
Before the server can send its response however
(presumably an ACK) it crashes (3). The client
receives no acknowledgement from the server, so
it times out and resends its packet (4). After the
server reboots it receives this retransmission, this
time, however, the TAO test fails and the server
queues the data (5). The failed TAO test forces a

3-way handshake (6) because the server’s CC
cache is invalidated when it reboots. After
completing the 3-way handshake and establishing
a connection, the server then passes the queued
data to the application layer, for a second time. The
server cannot tell that it has already accepted the
data because it maintains no state after a reboot.
This violates the basic premise of T/TCP that it
must remain completely backward compatible with
TCP.

 5

2.2 Solutions to T/TCP Security
Problems

2.2.1. Dominance of TAO
Packet Sniffing

T/TCP is not subjective to packet sniffing more
easily than TCP. But after being sniffed, it’s
indeed much easier for a cracker to fake T/TCP
connections than TCP ones, due to TAO
mechanism. However, any blame of T/TCP based
on this notion is obviously baseless, because it’s
just as ridiculous as blaming cars based on a notion
that a thief can slip away faster after stealing your
car instead of your bicycle.

The Numbers Game

Fairly speaking, current TAO mechanism is really
too simple. There is only one requirement to pass
TAO test: received CC value is larger than cached
CC value on the server. Even worse, CC is an
unsigned 32-bit integer which is, according to
RFC1644, initialized to 1 when the machine starts
up. As a result, a fabricated large value (such as
2^32 –1) has a nearly definite chance of passing
TAO test. This can be a serious security hole.
Therefore, TAO mechanism should be enhanced.

Solution

1. Make CC a socket variable instead of a global
one

In RFC1644, CC is defined as a global variable.
Whenever a new connection has been established,
no matter through which network interface, CC is
incremented by 1. However, as we find out, by
making CC a socket variable instead of a global
one, several benefits can be achieved:

In order to maintain T/TCP’s correctness, CC
values must advance at a rate slower than 2^32-1
counts per 2MSL. Originally, with CC a global
variable, 2^32-1/2MSL is the maximum number of
total transactions per second on a machine. Now,
with CC a socket variable, 2^32-1/2MSL is the
maximum number of total transactions per second
on a socket, or a pair of machines. Machines with
busier network interfaces will gain great benefits in
this way.

As a socket variable, CC increases in an
anticipated manner: CC value increments by 1 only
when a new connection has been established
between the specific pair of machines. Thus, the
new requirement to pass TAO test is that received
CC value is exactly one larger than cached CC
value on the server side. As a result, the possibility
of success for “The Numbers Game” is greatly
reduced.

2. Make CC randomly initialized

As stated above, by making CC a socket variable,
TAO mechanism is very much enhanced. However,
there exists one fact: usually the transaction rate
between a specific pair of machines is low, which
means the CC value for a certain socket can be
small (say under 100) in most cases. Accordingly,
“The Numbers Game” can have an updated version:
starting from 1, try different CC values one by one.
After 100 times or so, a T/TCP connection may be
successfully faked.

In order to make passing TAO test more expensive,
we highly recommend making CC randomly
initialized, which means CC can start from any
place from 1 to 2^32-1. This way, crackers will
really have a tough time.

2.2.2. SYN Flooding
SYN Cookie

SYN cookie cannot be used with T/TCP since no
TCP options can be saved when SYN cookie are in
use. However, it’s an inherent problem in SYN
cookie and not a fault at all of T/TCP. With SYN
cookie, no TCP extensions with TCP options are
possible, not only T/TCP.

Generally, there are two ways to defend against
SYN flooding: SYN cache and SYN cookie. With
SYN cache, the amount of memory for states is
reduced greatly, thus making SYN flooding much
more expensive but never eradicating the
possibility. SYN cookie eliminates the need for
storing states with the price of losing any TCP
option.

Besides, SYN cookie has other 2 drawbacks:

1. TCP requires unacknowledged data to be
retransmitted. The server is supposed to
retransmit the SYN.ACK packet before
giving up and dropping the connection. When
SYN.ACK arrives at the client but the ACK
gets lost, there is a disparity about the
establishment state between the client and
server. Ordinarily, this problem can be solved
by server’s retransmission. But in the case of
SYN cookie, there is no state kept on the
server and retransmission is impossible.

2. SYN cookie has the property that the entire
connection establishment is performed by the
ACK packet from the client, independent of
the preceding SYN and SYN.ACK packets.
This opens the possibility of ACK flooding,
in the hope that one will have the correct
value to establish a connection. This also
provides an approach to bypass firewalls
which normally only filter packets with SYN
bit set.

 6

Due to the limits of SYN cookie listed above, a
typical implementation method is to use SYN
cache first and falls back to SYN cookie when a
certain amount of memory has been allocated for
state preservation.

Due the existential limits of SYN cookie, T/TCP’s
incompatibility with it should not be a guilt. The
way to get around can be simple: only use SYN
cache with T/TCP and turn off T/TCP when SYN
cookie is enabled.

Failed TAO resulting in queued data.

According to RFC1644, when TAO fails, the
protocol falls back to TCP but the data sent in the
SYN packet is queued to decrease overhead and
increase throughput. However, deliberately failing
TAO during SYN flooding can be quite easy but
destructive. In order for T/TCP to be safer and
completely back compatible with TCP, the data
should be discarded and sent again after the 3-way
handshake succeeds.

2.2.3. Trust Relationship
This attack is completely based upon “Dominance
of TAO”. If TAO can’t be dominated as claimed
above, “Trust Relationship” attack on T/TCP is, at
least, as difficult as on standard TCP.

2.2.4. Duplicate Delivery
Duplicate delivery is an inherent problem in RPC,
which is called “Server Crash”. Fairly speaking,
T/TCP shouldn’t be blamed for it. Let’s take a
closer look at this problem.

In Remote Procedure Call (RPC), requests can be
divided into two categories: idempotent or non-
idempotent. Idempotent requests can be executed
repeatedly without errors while non-idempotent
ones can’t. An example of non-idempotent request
is withdrawing 1 million USD from your account.
You surely don’t want it to happen more times
than you want.

“Server Crash” can happen in two ways:

• After receiving and before execution

• After execution and before responding

Unfortunately, the client can’t tell any difference
between those two kinds of server crashes. All it
knows is response timeout.

Facing this problem, 3 choices are available:

1. The client waits until the server finishes
reboot, after which the client resends the
request. This technique is called “at least once
semantics”.

2. The client gives up and reports failure. This
technique is called “at most once semantics”.

3. No special action is taken. The client gets no
help or guarantee. On the server side, RPC
may be executed many times, or not at all.
Obviously, the merit is ease of
implementation.

The above 3 choices are not ideal. The ideal one is
“exactly once semantics” which is very difficult to
realize.

Possible solutions

1. The client assigns a sequence number to every
packet it transmits. And the server stores the
latest sequence number it receives from the
client. Thus, the server can easily tell whether
a packet from the client is a retransmitted one.

2. The client sets a certain bit when marking a
packet retransmitted. That bit can work as a
warning for the server: additional cares need
to be taken for the packet.

In real-life implementations, it’s the application
layer that shoulders the responsibility. Generally
speaking, idempotent requests are those
inseparable from their contexts. If the application
sees a response timeout after sending a request, it
can take extra measures to check whether the
request contexts have been changed and make a
decision (e.g. retransmitting the request or sending
a updated request) accordingly.

3 Methods to Achieve
Better Compatibility
with TCP

3.1 Discard data in SYN when
TAO fails

When a T/TCP-enabled client sends initial SYN
(with data) to a remote server, 3WHS can be
carried out in two situations: the server doesn’t
support T/TCP, or the server supports T/TCP but
TAO fails. Most current TCP implementations
discard data sent with initial SYN so the data
should be sent again after the 3-way handshake
succeeds. T/TCP-enabled server should also
discard data and behave exactly the same as a
T/TCP-disabled server. Otherwise, the client will
need to differentiate the above two situations and
decide whether to retransmit the data. Besides,
security can also be enhanced this way.

 7

3.2 Turn on or off T/TCP
globally or locally, at any
time

In our implementation, a global flag co-exists with
socket-level flags. The global flag enables (when
on) or disables (when off) T/TCP features for all
the newly created sockets. In other words, the
global flag acts as a default value. Currently, its
state is a kernel compilation choice. By contrast,
socket-level flags can override the global flag.
They can be turned on or off by calling system
function setsockopt() with option name “TTCP”
and option value 1(on) or 0(off). Enabling or
disabling T/TCP during run-time introduces
greater flexibility and better compatibility with
TCP.

4 Implementation of
ET/TCP in Linux Kernel
2.4.2

4.1 New TCP Options
Notes

� CC_ECHO option is included only if
CC option is included.

� CC_ECHO option is included only in
SYN/ACK packets if both sides
support T/TCP.

Figure 4: New TCP Options

4.2 New Structures and Macros
in file “include/linux/tcp.h”

/* a macro used to increment ttcp_gen and
ensures ttcp_gen to be non-zero when it’s
rounded-up */

#define CC_INC(a) (++(a) == 0 ? ++(a) : (a))

in file “include/net/tcp.h”

 8

/* constants used in T/TCP options */

#define TCPOLEN_CC 6

#define TCPOLEN_CC_NEW 6

#define TCPOLEN_CC_ECHO 6

#define TCPOLEN_CC_ALIGNED 8

in struct dst_entry{} in file
“include/net/dst.h”

/* The per-host cache tao_cc is the CC value
contained in the last SYN (no ACK) packet
received from the remote host; tao_ccsent is
the CC value contained in the last SYN (no ACK)
packet sent to the remote host; ttcp_gen is a
socket-level non-zero variable that’s
incremented everytime a new connection has been
started; */

struct rt_tao {

__u32 tao_cc;

__u32 tao_ccsent;

_u32 ttcp_gen;

} tao;

in struct tcp_opt{} in file
“include/net/sock.h”

/* The per-connection cache t_duration shows
how long this connection has been in existence
since active open; cc_send is the CC value
contained in every packet sent to the remote
host on this connection; cc_recv is the CC
value contained in every packet received from
the remote host on this connection */

struct tcp_opt_cc {

unsigned long t_duration;

__u32 cc_send;

__u32 cc_recv;

} cc_cache;

/* two booleans for T/TCP states */

char TTCP_SENDSYN, TTCP_SENDFIN;

/* values of T/TCP options parsed from incoming
packets */

__u32 cc;

__u32 cc_new;

__u32 cc_echo;

/* a per-connection flag to enable or disable
T/TCP */

int do_rfc1644;

in file “include/net/sock.h”

/* macros to set two booleans for T/TCP states
*/

#define TTCP_SENDSYN_ON(sk) ((sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN = 1)

#define TTCP_SENDFIN_ON(sk) ((sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN = 1)

#define TTCP_SENDSYN_OFF(sk) ((sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN = 0)

#define TTCP_SENDFIN_OFF(sk) ((sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN = 0)

/* macros to test T/TCP states */

#define TTCP_SYN_SENT(sk) ((sk)->state ==
TCP_SYN_SENT && (!(sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN) && (sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN)

#define TTCP_SYN_RECV(sk) ((sk)->state ==
TCP_SYN_RECV && (!(sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN) && (sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN)

#define TTCP_ESTABLISHED(sk) ((sk)->state ==
TCP_ESTABLISHED && (!(sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN) && (sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN)

#define TTCP_CLOSE_WAIT(sk) ((sk)->state ==
TCP_CLOSE_WAIT && (!(sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN) && (sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN)

#define TTCP_LAST_ACK(sk) ((sk)->state ==
TCP_LAST_ACK && (!(sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN) && (sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN)

#define TTCP_FIN_WAIT1(sk) ((sk)->state ==
TCP_FIN_WAIT1 && (!(sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN) && (sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN)

#define TTCP_CLOSING(sk) ((sk)->state ==
TCP_CLOSING && (!(sk)-
>tp_pinfo.af_tcp.TTCP_SENDFIN) && (sk)-
>tp_pinfo.af_tcp.TTCP_SENDSYN)

4.3 TIME-WAIT Truncation
Step One

In order to record the start point of a connection,
we have added the following line:
tp->cc_cache.t_duration = jiffies;

to function ttcp_connect
(net/ipv4/tcp_output.c)

Step Two

When a sock enters TIME_WAIT state, it calls
function tcp_time_wait() in
net/ipv4/tcp_minisocks.c. In that function, we
check whether the connection has been in
existence for a period shorter than TTCP_MSL. If
so, TIME_WAIT truncation is valid. And we set
the TIME_WAIT period to 12*TTCP_MSL (12s)
instead of TCP_TIMEWAIT_LEN (60s).

Step Three

The client can actually call bind() to reuse one
particular local port intentionally. In this process,
tcp_v4_get_port() is called. We have modified the
function to enable it to make a particular port
available when the port is currently owned by one
sock in TIME_WAIT state.

 9

4.4 Sending Function Call Tree

Figure 5: Sending Function Call Tree

4.5 Receiving Function Call Tree

Figure 6: Receiving Function Call Tree

 10

4.6 Write T/TCP-enabled Client and Server Codes
Client Codes

T/TCP client doesn’t use “connect()”, but uses “sendto()” directly. “sendto()” connects to the server and
sends a request simultaneously with only one packet. Pay attention: we choose a new flag “MSG_EOF” as
the 4th argument of “sendto()”, which signals to the kernel the end of the user’s data. As a result, this
special “sendto()” sends one packet with SYN + data + FIN. In other words, “sendto()” performs the
functions of “connect()”, “write()” and “shutdown()”.

Server Codes

There is only one difference: T/TCP server uses “send()” instead of “write()”. Thus, by setting “send()”
4th argument to MSG_EOF, the server sends the response together with FIN flag in one packet.

References
[1] Richard W. Stevens. TCP/IP Illustrated Volume 1: The Protocols

[2] Richard W. Stevens. TCP/IP Illustrated Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX
Domain Protocol4

[3] Bob Braden. RFC1379: Extending TCP for Transactions -- Concepts

[4] Bob Braden. RFC1644: T/TCP -- TCP Extensions for Transactions Functional Specification

[5] DARPA Internet Program. RFC793: Transmission Control Protocol Specification

[6] Jonathan Lemon. Resisting SYN flood DoS attacks with a SYN cache

[7] Bernstein D.J. SYN cookies http://cr.yp.to/syncookies.html

[8] Borman D. TCP Implementation posting http://www.kohala.com/start/borman.97jun06.txt

[9] Michael Mansberg. TCP/IP for Transactions http://www.embedded.com

